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Key Points: 21 

 1.9±0.3 MtC of fossil fuel CO2 was emitted in Baltimore-Washington during February 22 

2015 based on data collected during 7 aircraft flights 23 

 4 bottom-up inventories indicate 2.2±0.3 MtC of fossil fuel CO2 was emitted, in good 24 

agreement with our top-down estimate 25 

 The uncertainty from a single flight segment was ±38% (1𝜎); data from 7 flights yielded 26 

a precision of 16% at the 95% confidence level 27 

Abstract 28 

To study emissions of CO2 in the Baltimore, MD-Washington, D.C. (Balt-Wash) area, an aircraft 29 

campaign was conducted in February 2015, as part of the FLAGG-MD (Fluxes of Atmospheric 30 

Greenhouse-Gases in Maryland) project. During the campaign, elevated mole fractions of CO2 31 

were observed downwind of the urban center and local power plants. Upwind flight data and 32 

HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) model analyses help 33 

account for the impact of emissions outside the Balt-Wash area. The accuracy, precision, and 34 

sensitivity of CO2 emissions estimates based on the mass balance approach were assessed for 35 

both power plants and cities. Our estimates of CO2 emissions from two local power plants agree 36 

well with their CEMS (Continuous Emissions Monitoring Systems) records. For the 16 power 37 

plant plumes captured by the aircraft, the mean percentage difference of CO2 emissions was 38 

−0.3 %. For the Balt-Wash area as a whole, the 1𝜎 CO2 emission rate uncertainty for any 39 

individual aircraft-based mass balance approach experiment was ±38 %. Treating the mass 40 
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balance experiments, which were repeated seven times within nine days, as individual 41 

quantifications of the Balt-Wash CO2 emissions, the estimation uncertainty was ±16 % (standard 42 

error of the mean at 95% CL). Our aircraft-based estimate was compared to various bottom-up 43 

fossil fuel CO2 (FFCO2) emission inventories. Based on the FLAGG-MD aircraft observations, 44 

we estimate 1.9±0.3 MtC of FFCO2 from the Balt-Wash area during the month of February 2015. 45 

The mean estimate of FFCO2 from the four bottom-up models was 2.2±0.3 MtC. 46 

1 Introduction 47 

A major increase in the atmospheric abundance of CO2 since the industrial revolution—with 48 

significant positive perturbation to the radiative forcing of climate—has resulted in a rise of 49 

global mean surface temperature over the past century (Stocker et al., 2013). A large number of 50 

studies that clarified the detrimental impact of global warming and resulting climate change on 51 

Earth’s ecosystem have spurred individual nations to mitigate greenhouse gas (GHG) emissions 52 

under the Paris Climate Agreement (Salawitch et al., 2017). Along with the efforts by most of 53 

the world’s nations, the role of cities in GHG mitigation has become even more important given 54 

the recent U.S federal decision to pull back from the Paris Climate Agreement (UN, 2017). 55 

Currently, the state of Maryland is on track for reducing consumption-basis GHG emissions by 56 

25% in 2020 and 40% in 2030 relative to emissions in 2006 (MDE, 2015). Washington, D.C. has 57 

set a plan to reduce consumption-basis GHG emissions by 50% in 2032 and by 100% in 2050 58 

relative to 2006 emissions (DOEE, 2018). 59 

With increasing GHG mitigation efforts, scientific research to improve the quantification and 60 

attribution of carbon sources in urban areas has become more important (Duren & Miller, 2012; 61 

Hutyra et al., 2014; Patarasuk et al., 2016). According to UN-Habitat (2011), more than 70% of 62 

global CO2 emissions related to energy usage comes from urban areas. Also, measuring CO2 in 63 

urban areas is more tractable than measuring CO2 in countries, because the CO2 signal from 64 

cities is intense and localized (Gratani & Varone, 2005; Idso et al., 2001). Various measurement 65 

techniques, data analyses, and modeling methods have been collectively used to study CO2 66 

emission in urban areas. Among many U.S. cities, the Indianapolis area was chosen as one of the 67 

first testbed sites to develop and evaluate a framework to study urban GHG emissions, given its 68 

relatively simple topography and isolation from other large cities (Davis et al., 2017; Whetstone, 69 

2018). The Indianapolis Flux Experiment (INFLUX, https://www.nist.gov/topics/greenhouse-70 

gas-measurements/indianapolis-flux-experiment) has successfully developed and improved the 71 

mass-balance method and the inversion framework, called “Top-down” approaches, as well as 72 

inventory data-based emission models such as Hestia, a “Bottom-up” approach (Gurney et al., 73 

2017; Lauvaux et al., 2016; Turnbull et al., 2015, 2018; Whetstone, 2018). Along with INFLUX, 74 

several projects with similar aims have been conducted in other cities. The Megacities Carbon 75 

Project was designed to quantify carbon emissions in some of the world’s largest cities, including 76 

Los Angeles, Paris, and San Paulo (Bréon et al., 2015; Feng et al., 2016; Newman et al., 2016). 77 

Urban GHG emissions from the Boston area (Sargent et al., 2018) and Salt Lake City (McKain et 78 

al., 2012; Strong et al., 2011) have also been extensively investigated.  79 

The Fluxes of Atmospheric Greenhouse-Gases in Maryland (FLAGG-MD) project is part of the 80 

National Institute for Standards and Technology (NIST) U.S. Northeast Corridor testbed which, 81 

in its first phase, is focused on the Baltimore, Maryland (MD)-Washington, D.C. (Balt-Wash) 82 

area (Lopez-Coto et al., 2017; Mueller et al., 2018; https://www.nist.gov/topics/northeast-83 

corridor-urban-test-bed). Taking a lead from the successful deployment of INFLUX, the 84 

https://www.nist.gov/topics/greenhouse-gas-measurements/indianapolis-flux-experiment
https://www.nist.gov/topics/greenhouse-gas-measurements/indianapolis-flux-experiment
https://www.nist.gov/topics/northeast-corridor-urban-test-bed
https://www.nist.gov/topics/northeast-corridor-urban-test-bed
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FLAGG-MD project aims to understand and quantify emissions of CO2, CH4, and CO in the 85 

Balt-Wash area. While FLAGG-MD is similar in many ways to INFLUX, the geography of the 86 

Balt-Wash area engenders the following complications. The Balt-Wash area is part of the U.S. 87 

Northeast Corridor, which includes other major cities such as Boston, New York City, and 88 

Philadelphia. Also, the Balt-Wash area is located southeast of the Appalachian Mountains and 89 

northwest of the Chesapeake Bay, such that mesoscale circulations complicate the atmospheric 90 

transport of urban GHG emissions. Several large power plants upwind of the Balt-Wash area can 91 

episodically increase the spatiotemporal variability of the background mole fractions of CO2. 92 

The Balt-Wash urban testbed consists mainly of aircraft campaigns conducted in collaboration 93 

with Purdue University (Lopez-Coto et al., 2020; Ren et al., 2018; Salmon et al., 2017, 2018), 94 

along with several other assets: installations of low cost CO2 sensors (Martin et al., 2017), 95 

meteorological data assimilation, modeling of tower-based observations (Martin et al., 2019; 96 

Mueller et al., 2018) and incorporation of data from the Orbiting Carbon Observatory 2 (OCO-2).  97 

In this study, emissions of CO2 from the Balt-Wash area are quantified using the FLAGG-MD 98 

aircraft campaign dataset obtained during the month of February 2015. Section 2 describes the 99 

aircraft campaign, the mass balance approach, and various models used in this study. In section 100 

3.1, source apportionment of the plumes of CO2 observed by the aircraft is presented. In section 101 

3.2, the impact of plume transport from out-of-state power plants on the aircraft observations is 102 

investigated. In section 3.3, the accuracy and precision of the aircraft-based mass balance 103 

estimates are evaluated using the Continuous Emissions Monitoring Systems (CEMS) records of 104 

two local power plants. Section 3.4 discusses the uncertainty from mass balance parameters. In 105 

section 3.5, differences in the CO2 emission rate among our mass balance estimate, other 106 

previously published bottom-up/downscaling model estimates, and the state of Maryland 107 

emission inventory are investigated. 108 

2 Methods 109 

2.1 Instrumentation 110 

The University of Maryland (UMD) Cessna 402B aircraft was equipped with a cavity ring-down 111 

spectroscopic (CRDS) analyzer (Picarro Model G2401-m) that is used to measure the dry air 112 

mole fraction of CO2. Measurements of CO2 were calibrated on the ground as well as during the 113 

flight using an onboard calibration system with two cylinders of standard gases certified by 114 

National Institute of Standards and Technology (NIST). These cylinders contained CO2 of 115 

369.19 and 445.78 mol mol
1

 (parts per million, or ppm). A diaphragm pump was installed to 116 

pull the ambient air from the nose of the Cessna through a rear-facing Perfluoroalkoxy alkanes 117 

(PFA) Teflon tube (O.D=0.95 cm and I.D=0.64 cm), at a total flow rate of 10 L/min. The CRDS 118 

analyzer was connected to the main sample line via a Tee connection, allowing air to be pumped 119 

continuously through the analyzer at a rate of 400 mL/min. We tested the stability of the analyzer 120 

by sampling a tank of breathing air continuously while the aircraft climbed from 50 to 3500 m 121 

altitude – the standard deviations of CO2 were very small, near the measurement precision limit 122 

of the Picarro instrument. The UMD aircraft was also equipped with instruments to measure SO2, 123 

NO2, NO, O3, aerosols, and meteorological variables. A more detailed description on the 124 

instrumentation can be found in Ren et al. (2018). The Purdue Duchess aircraft was equipped 125 

with a CRDS analyzer (Picarro Model G2301-m) for measurements of CO2 and a Best Air 126 

Turbulence (BAT) probe for measurements of the three-dimensional wind field. A more detailed 127 
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description of the instrumentation on the Purdue Duchess aircraft can be found in Salmon et al. 128 

(2018). 129 

To examine the sensitivity of our mass-balance emission estimation of CO2 emissions (described 130 

in section 2.5) to the measurement uncertainties, 1𝜎 uncertainties of the temperature, pressure, 131 

and CO2 mole fraction measurements were propagated into the mass balance equation. The 1𝜎 132 

absolute uncertainty of temperature measurements from both UMD and Purdue flight 133 

instruments was determined to be2.0 K, based upon a comparison of temperature measurements 134 

made from the two aircraft during a wingtip-to-wingtip flight segment conducted on 19 February 135 

2015. For the 1𝜎 uncertainty of the pressure measurements for the UMD flights, the reported 136 

instrument uncertainty of 0.25 hPa was used. For the Purdue flights, 1𝜎 uncertainty was 137 

determined to be 1.6 hPa based upon a comparison of measured pressure versus calculated 138 

barometric pressure. For the 1𝜎 uncertainty of the CO2 measurements, the reported instrument 139 

uncertainty of 0.1 ppm was used for data collected by both the UMD and Purdue instruments. 140 

2.2 Aircraft research flight design 141 

For this study, the Balt-Wash area is defined as a rectangularly-shaped region enclosed by the 142 

four coordinates of 38.23°N 76.67°W, 39.46°N 75.86°W, 39.87°N 77.04°W, 38.63°N 77.86°W 143 

(154×111 km
2
, see Figure 1). The defined study area consists of large populated regions, within 144 

and surrounding the cities of Baltimore, MD and Washington, D.C. The total population within 145 

the study area was 8,153,000 in year 2015 based on Gridded Population of the World (GPWv4) 146 

data (CIESIN, 2018). Seven major power plants (all within either the states of Maryland or 147 

Virginia) and a dense road network including major highways such as the Capital Beltway ring 148 

(I-495), the Baltimore Beltway (I-695), and interstate highway I-95 all lie within the study area. 149 

According to the Maryland GHG inventory, total of 18.8 MtC (Million tons Carbon) of Fossil 150 

Fuel CO2 (FFCO2) was emitted from Maryland during year 2014 (MDE, 2016). 151 

The UMD aircraft conducted a total of nine research flights (UMD RF1-9) in February 2015. 152 

Figure 1 shows all of these flight tracks and Figure S1 shows individual flight tracks. During 153 

seven research flights (UMD RF1-6 and RF8) northwesterly winds prevailed, while a 154 

northeasterly wind was present on UMD RF9 and a southwesterly wind occurred on UMD RF7. 155 

For all flights, the UMD aircraft departed from the Tipton airport (located between Washington, 156 

D.C. and Baltimore) and first flew a horizontal transect upwind of the study area to sample the 157 

incoming air. For the downwind transects of UMD-RF1-6 and RF8, an imaginary vertical plane 158 

AB was defined at the location where polluted plumes from the major emission sources—power 159 

plants, the I-95 highway, and the Washington, D.C., and Baltimore, MD metropolitan areas—160 

could be sampled separately under northwesterly wind condition (see Figure 1). The aircraft 161 

made multiple horizontal transects at different altitudes in the plane AB to capture the outgoing 162 

air. Several vertical profiles were taken to measure vertical distribution of trace gases and to 163 

estimate the planetary boundary layer (PBL) height. For UMD-RF9, the sampling at downwind 164 

transects at various altitudes was conducted along the plane BC, since this flight was conducted 165 

under northeasterly winds. Data from UMD-RF7 are not used below because of the complex 166 

wind patterns prevalent in the study area on 24 February 2015. 167 

The Purdue aircraft conducted a total of six research flights between 16 February to 11 March 168 

2015 (Salmon et al., 2017, 2018) (Figure 1 and S1). Purdue flight tracks were designed in a 169 

similar manner to the UMD flights, aiming to measure mole fractions of CO2 upwind and 170 

downwind of the Balt-Wash area. On 19 February 2015 (Purdue-RF3), the Purdue aircraft was 171 
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coordinated with the UMD aircraft (UMD-RF4) to conduct direct comparisons of in-situ 172 

measurements of CO2, other GHGs, and meteorological variables during a wing-tip to wing-top 173 

segment that lasted about 40 minutes. 174 

2.3 HYSPLIT transport modeling  175 

In this study, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was 176 

used to determine the sources of polluted plumes observed from the aircraft (Draxler et al., 1997; 177 

Stein et al., 2015). A series of back trajectories starting at the aircraft locations, at one second 178 

intervals, was computed using the default model configuration setup and NAM12 (North 179 

American Mesoscale Forecast System, 12 km horizontal resolution) as input meteorology. 180 

Forward transport modeling of power plant CO2 plumes was conducted using HYSPLIT particle 181 

dispersion mode with NAM4 (4 km horizontal resolution). The number of particles released per 182 

cycle (variable name ‘numpar’) was set to 10
6
. The output mass was divided by air density to 183 

obtain mole fraction (ichem=6). Horizontal grid spacing was specified as 0.1°, given that the 184 

objective of the modeling is to understand the inter-state transport of power plant plumes in the 185 

eastern U.S. Vertical grid spacing was set at 100 m below 2000 m and at 500 m above 2000 m. 186 

All other configuration parameters were set at default values, as described in Draxler et al. 187 

(2014). As input emission sources, we used power plants listed in the Environmental Protection 188 

Agency’s Clean Air Markets Division (EPA CAMD) datasets for Washington, D.C., Maryland, 189 

Pennsylvania, Virginia, West Virginia, and Ohio. The EPA CAMD emission dataset of facility-190 

level hourly CO2 emissions records was obtained from the Air Markets Program Data (AMPD) 191 

query system (USEPA AMPD, 2015). 192 

2.4 VEGAS modeling and NDVI data 193 

A VEgetation-Global Atmospheric-Soil (VEGAS) model simulation was used to calculate the 194 

biogenic flux of CO2 over the Balt-Wash area during February 2015. VEGAS is a dynamic soil 195 

and vegetation model that simulates the growth of plant functional types based on meteorological 196 

data (Zeng et al., 2004, 2005). The model was run hourly at 9 km resolution using re-gridded 197 

NARR (North American Regional Reanalysis) data as meteorological input. The simulation was 198 

started in the year 1715 to provide a spin-up time for regional carbon pools.  199 

In addition to the benefit of estimating the biogenic CO2 flux for the study domain, gridded 200 

VEGAS biogenic CO2 flux output was combined with the Normalized Difference Vegetation 201 

Index (NDVI) data to investigate the impact of biogenic CO2 emissions on the background CO2 202 

that is needed for the mass balance calculation (see section 3.5.1). Since the VEGAS model was 203 

not specifically designed to compute biogenic emissions of CO2 in regions with complex 204 

landscapes such as the Balt-Wash study area, we have combined VEGAS output with NDVI data 205 

acquired within the study region during February 2015. First, gridded VEGAS output of net 206 

biogenic CO2 flux was computed for the entire Balt-Wash study area. Next, version v1r12 NDVI 207 

data (4 km, weekly, https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/index.php) from the 208 

Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National polar-orbiting 209 

partnership (Suomi-NPP) was summed within each of the narrow grid boxes (NDVI
GRID BOX

) 210 

perpendicular to line AB as shown in Figure S2. Then, the horizontal transect of the biogenic 211 

flux of CO2 within the study region, along line AB, was found by multiplying the VEGAS output 212 

(i.e., a single number representative of the entire study region) by the value of NDVI
GRID BOX

 for 213 

each specific grid box, and dividing by the sum of NDVI
GRID BOX 

for all grid boxes. In section 214 
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3.5.1, we describe the impact of biogenic CO2 flux on the background CO2 and the mass balance 215 

calculation. 216 

2.5 Mass balance approach and sensitivity analysis 217 

A mass balance approach was used to estimate the emission rate of CO2 from the Balt-Wash area 218 

and from two local power plants. Under steady wind conditions, the horizontal flux of CO2 219 

crossing the vertical plane AB located downwind of an emission source can be considered as an 220 

approximation of the vertical flux of CO2 over the emission source, while the air parcel was 221 

passing through the source (Trainer et al., 1995; White et al., 1983). A similar approach has been 222 

used in previous studies to estimate fluxes of trace gases such as CO2, CH4, CO, and NOx from 223 

various emission sources (Cambaliza et al., 2014; Heimburger et al., 2017; Kalthoff et al., 2002; 224 

Karion et al., 2015; O’Shea et al., 2014; Peischl et al., 2016; Salmon et al., 2017, 2018). In this 225 

study, the emission rate of CO2 (F, mol/s) was calculated with the following equation: 226 

   𝐹 = ∫  ∫ ([𝐶]𝑥,𝑧 − [𝐶𝑏𝑔]𝑥,𝑧) ∙ 𝑈𝑥,𝑧 ∙ 𝑘𝑥 𝑑𝑥𝑑𝑧
𝑥𝑓

𝑥𝑖

𝑧𝑓

𝑧𝑖
    (1) 227 

where x is the horizontal and z is the vertical location in the plane AB. Variables xi, xf and zi, zf are 228 

the horizontal and vertical bounds of AB influenced by the emission source of interest, [C] is the 229 

sampled number density of CO2, and [Cbg] is the computed background number density of CO2. 230 

Also, U is the wind speed perpendicular to the aircraft heading and k is the scaling factor for U, 231 

defined as the ratio of the mean U during transport time over the emission source to the value of 232 

U measured at the downwind flights. A detailed description of each parameter is provided in the 233 

following sections. 234 

2.5.1 Background mole fractions of CO2 235 

For the Balt-Wash area, background regions within the downwind transects were designated at 236 

northern and southern edges (Krautwurst et al., 2016). Then, the CO2 background was defined by 237 

fitting a linear regression line to the mole fractions of CO2 measured at both edges of the 238 

transects (Figure S3b, d, e, g). On 19 and 23 February 2015 the mole fractions of CO2 measured 239 

between the Washington, D.C. and Baltimore, MD plumes along line AB in Figure 1 were lower 240 

than mole fractions of CO2 measured at the edges of the downwind transect (Figure S3a, c, f). 241 

Our HYSPLIT transport modeling indicates that elevated CO2 at the downwind transect edges on 242 

these dates was likely due to power plant plumes transported from either Pennsylvania or West 243 

Virginia (see section 3.2). Therefore, an additional background region, approximately midway 244 

between the Washington, D.C. and Baltimore, MD plumes, was designated for the flights 245 

conducted on 19 and 23 February 2015.  For the three flights (UMD-RF4, UMD-RF6, and 246 

Purdue-RF3) conducted on these two days, background CO2 was determined by fitting two linear 247 

regression lines: one from the southern edge to the midway background flight segment and 248 

another from the midway segment to the northern edge. The background mole fractions of CO2 249 

were converted into background number density ([Cbg]) using in-situ measurements of 250 

temperature and the pressure, for use in Equation (1). 251 

The accuracy of our estimate of the background CO2 mole fraction was evaluated by conducting 252 

a comparison to upwind measurements of CO2 (Figure 2). For the comparison, the CO2 253 

background value defined at each point of every downwind transect was examined for potential 254 

pairing to the upwind measurements of CO2 conducted for the same flight. Forward HYSPLIT 255 

trajectories were computed every 1 sec of each upwind flight segment, which generally occurred 256 
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along the line CD in Figure 1. For each forward trajectory, a successful pairing was determined if 257 

a trajectory crossed the downwind transect meeting the following conditions: 1) trajectory 258 

altitude was within the PBL at the crossing time of the downwind track, 2) the crossing time of 259 

the downwind track was within ±1 hour of the time the aircraft collected data.  The upwind data 260 

were collected in early afternoon for all of the flights, and the downwind sampling occurred on 261 

average 2.5 hours later. Figure 2a shows a comparison of a 10 sec running mean of CO2 within 262 

the PBL collected during the upwind portion of the indicated flights versus the background value 263 

of CO2 computed for the location at which the trajectory crossed the downwind track. The 264 

excellent agreement between the upwind measurements of CO2 and our estimate background 265 

CO2 (mean and standard deviation of 0.180.79 ppm) supports the validity of the carbon 266 

emissions computed using the mass balance approach. We are unable to compare upwind CO2 to 267 

the estimate of background for UMD-RF9, because the aircraft flight track did not sample the 268 

composition of the atmosphere along line AD in Figure 1 that corresponds to the upwind location 269 

for this flight, due to the presence of northeasterly winds. 270 

Figure 2b compares the depth of the mixed layer, for the upwind flight leg (ordinate) and 271 

downwind flight leg (abscissa). The values originate from the North American Regional 272 

Reanalysis (NARR) meteorological fields for February 2015, because the depth of the PBL from 273 

NARR exhibits the closest agreement with the depth of the PBL inferred from our flight data. 274 

Figure 2 shows considerable variations in both the depth of the PBL and upwind CO2, between 275 

the six flights for which such a comparison is possible. Undoubtedly, this variation in the depth 276 

of the PBL plays a role in value of CO2 along the upwind leg. The fact that the depth of the PBL 277 

is stable between the upwind and downwind portions of the flight again supports the validity of 278 

the carbon emissions found using our mass balance approach. 279 

For power plant plumes, the horizontal bounds of the plume were determined based on large, 280 

sharp gradients in the in-situ measurements of CO2 as shown in Figure 3. The connection of 281 

these enhancements of CO2 to local, nearby power plant emissions was confirmed based upon 282 

visual inspection of HYSPLIT back trajectories initialized every 1 s along the flight track, shown 283 

also in Figure 3. The CO2 background for power plant plumes was defined as a linear function fit 284 

to the mole fractions of CO2, measured by the Picarro (G2401-m) on board the aircraft, at the 285 

either side of the plume's bounds. All 16 power plant plumes considered below displayed large 286 

enhancements of CO2 that could clearly be traced to a local, nearby power plant. 287 
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2.5.2 Wind 288 

Recently, a systematic aircraft heading-dependent bias was identified in wind speed and 289 

direction recorded by the Garmin system onboard the UMD aircraft (Ren et al., 2019). A series 290 

of bias correction methods was developed and applied to the wind measured by the UMD 291 

aircraft, utilizing a newly installed differential GPS instrument, NAM4 wind data, and local wind 292 

profilers. Text S1-3 provides a detailed description on how the systematic bias in the aircraft 293 

wind measurements was corrected. The wind speed perpendicular to the aircraft heading (U) was 294 

calculated using the wind speed, wind direction, and true track angle of the aircraft measured 295 

downwind of the emission source of interest. Then, 10 second running means of U were used for 296 

the mass balance calculation. For the sensitivity analysis, the standard deviation of U during the 297 

downwind transect period was added/subtracted from the original U for the mass balance 298 

calculation. 299 

From back trajectory analysis of seven mass balance flights (UMD RF4,5,6,8,9, Purdue RF3,4), 300 

we found that the average air transport time over the Balt-Wash area was ~5 hours, given the 301 

average wind speed of ~7 m/s across the study area. However, the value of U varies across the 302 

study area, which does have an impact on CO2 emissions found using the mass balance 303 

approach. To account for the variability of U during the transport time of air across the study 304 

area, a scaling factor k was estimated in following manner. For each 0.1°  0.1° horizontal grid, 305 

average U within the PBL (hereafter 𝑼𝑷𝑩𝑳
̅̅ ̅̅ ̅̅ ̅) was derived from NAM4 for the hour closest to the 306 

mean aircraft observation time (Figure S4a). Then, the resulting values of  𝑼𝑷𝑩𝑳
̅̅ ̅̅ ̅̅ ̅ were averaged 307 

within a series of diagonal latitudinal bins across the Balt-Wash study area (Figure S4b). For 308 

each latitudinal bin, the scaling factor k was calculated by dividing the mean of all 𝑼𝑷𝑩𝑳
̅̅ ̅̅ ̅̅ ̅ with the 309 

𝑼𝑷𝑩𝑳
̅̅ ̅̅ ̅̅ ̅ at the downwind edge. Obtained k for latitudinal bins were interpolated and applied to 310 

individual wind measurements (U) (Figure S4c). We found that k values averaged for each of the 311 

seven mass balance flights range from 0.75 to 1.06 (Table 1). For the sensitivity analysis, k was 312 

calculated using the same method, but for ±1 hour from the mean aircraft observation time. 313 

Then, the standard deviation of k within three hours span was added/subtracted from the original 314 

k for the mass balance calculation.  315 

To address the impact of the scaling factor k on our determination of emissions of CO2 from the 316 

Balt-Wash area, emissions were also estimated assuming consistent perpendicular wind speed 317 

throughout the transport time (k=1). When consistent wind (k=1) is assumed, the monthly total 318 

FFCO2 emission was estimated to be 2.0 MtC, which is 5% larger than the estimate of 1.9 MtC 319 

that accounts for the variability of U during the air transport time.  Further details are given in 320 

Figures S5 and S6. Given the relatively short transport time of power plant plumes between 321 

emission and aircraft sampling, the scaling factor k =1 was used for the calculation of power 322 

plant emissions of CO2. 323 

2.5.3 Vertical and horizontal boundary  324 

To include emissions of CO2 transported above the PBL into our estimate of CO2 emissions, the 325 

adjusted mixing height (zadj) was determined and used as a vertical bound (zf) of the mass 326 

balance equation. First, the well-mixed planetary boundary layer height (zpbl, dashed line in 327 

Figure S7) and the entrainment height (ze, dotted line in Figure S7), an altitude where mixing 328 

from the PBL has reached free tropospheric level, were determined from the vertical profiles of 329 

potential temperature and mole fractions of the trace gases (CO2, CH4, and H2O). Then, the 330 
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adjusted mixing height (zadj) was calculated using zadj = (3zpbl + ze) / 4, as described by Peischl et 331 

al. (2016). Also, ±1 uncertainty of zadj was determined as ± (zpbl − ze) / 2 (Figure S7), again 332 

from Peischl et al. (2016). For flights that obtained multiple vertical profiles (UMD-RF4,5,8 and 333 

Purdue-RF3,4), the adjusted mixing height and its uncertainty (zadj ± 1) determined from each 334 

vertical profile were linearly fit as a function of the observation time. From this function, the 335 

vertical boundary of the PBL and its uncertainty (zf ±1) were determined at the mid-point of the 336 

downwind flight period. For the flights with a single vertical profile in the downwind region 337 

(UMD-RF6,9), values of zadj and their 1 estimated from the only vertical profile were used to 338 

define zf 1. For the sensitivity analysis, values of zf ± 1 were used as the vertical boundary in 339 

the mass balance calculation. 340 

Horizontal boundaries (xi, xf) were determined as the locations where the HYSPLIT back 341 

trajectory passed through the southern and northern bounds of the Balt-Wash area (UMD-342 

RF4,5,6,8 and Purdue-RF3,4). For UMD-RF9, horizontal boundaries were determined as the 343 

locations where the back trajectory went through the western or southern bound of the study 344 

area. To estimate the emission rate of CO2, horizontal fluxes were calculated for each point in the 345 

downwind transects (unit: gC m
2

 sec
1

). The calculated fluxes were averaged into a single value, 346 

then multiplied by the horizontal (xf − xi) and vertical boundary distances (zf − zi) (unit: gC sec
-1

), 347 

as described by Equation (1). 348 

3 Results 349 

3.1 Source identification and attribution: Baltimore, MD-Washington, D.C. area 350 

During the aircraft campaign, spikes of CO2 were often observed. For example, for UMD-RF5 351 

on 20 February 2015, three spikes of CO2 were recorded downwind of the Balt-Wash area (green 352 

shaded areas in Figure 3b). To determine the sources of these plumes, a series of HYSPLIT back 353 

trajectories were calculated. When the wind direction was consistent during the transport over 354 

the Balt-Wash area, which was the case for 20 February 2015, power plant plumes could be 355 

clearly isolated from the emissions of the surrounding urban region (Figure 3a). The first two 356 

spikes of CO2 observed at 15:40 and 15:47 (EST) were attributed to the Morgantown (MT) and 357 

Chalk Point (CP) power plants, respectively. The spike of CO2 observed downwind of the 358 

Baltimore, MD (16:05) was attributed to the Brandon Shores and H. A. Wagner (B&W) power 359 

plants, which are in close proximity. According to CEMS records, the B&W, MT, CP power 360 

plants emitted 1470, 980, 540 tons of CO2 and 2.8, 0.8, 0.8 tons of SO2 respectively, during a 361 

one-hour period from 14:00 PM to 15:00 PM on 20 February 2015. Simultaneous increases of 362 

the mole fractions of SO2 for the three spikes of CO2, showing ratios of SO2/CO2 mole fraction 363 

similar to those from CEMS records, confirm that the plumes were emitted from power plants. 364 

The B&W, MT, and CP power plants emitted total of 3.4 MtC in year 2015, contributing 75.4% 365 

of the annual total power plant emissions of CO2 in Maryland (USEPA GHGRP, 2019).  366 

Along with the three spikes of CO2 attributed to local power plants, broad areas of increased CO2 367 

were observed downwind of the Washington, D.C. and Baltimore, MD (grey shaded areas in 368 

Figure 3b). We argue that increased mole fractions of CO2 downwind of the Washington, D.C. 369 

area were mostly induced by emissions from local fossil fuel combustion, while increased CO2 370 

downwind of Baltimore was induced by a mixture of plumes from that city and from several 371 

power plants in the state of Pennsylvania (See section 3.2).  372 
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3.2 Source identification and attribution: Inter-state transport of power plant plumes 373 

During the aircraft campaign, several spikes in the mole fraction of SO2 were observed both 374 

upwind and downwind of the Balt-Wash area. To find the sources of these plumes of SO2, 375 

HYSPLIT back trajectories were calculated on six days (Figure 4a-f). These trajectories showed 376 

that some of the SO2 plumes observed downwind of the Balt-Wash area are likely to be the same 377 

plumes observed on the upwind flight legs (Figure 4a, b, d, e). During UMD-RF8, the aircraft 378 

observed a broad increase of SO2 north of Washington, D.C. due to advection from the westerly 379 

wind direction (Figure 4f). Figure 4g shows that several plumes of SO2 observed downwind of 380 

the Balt-Wash area were transported from the mid-west Pennsylvania area where five large 381 

power plants are located. The total nameplate capacity of the five power plants was 6,444 MW 382 

(Coal: 90.3% Natural gas: 9.4%) according to USEIA (2016). The Homer City power plant was 383 

reported as one of the largest SO2 emitting facility in the entire U.S. for 2015 (USEPA AMPD, 384 

2015). As the five power plants are geographically aligned from northwest to southeast in close 385 

proximity, a northwesterly wind is likely to merge the plumes from these power plants, leading 386 

to the inter-state transport of a highly polluted plume with relatively small horizontal width into 387 

the Balt-Wash area. 388 

To further investigate the impact of upwind power plant plumes on the aircraft measurements, 389 

forward transport modeling of power plant CO2 was conducted for 19 and 20 February 2015 390 

(UMD-RF4, 5). Figure 5 shows that airborne observations of the spikes in CO2, induced by both 391 

local and upwind power plants, were well reproduced by the forward modeling (HYSPLIT CO2). 392 

A contour map of HYSPLIT CO2 shows that continuous flow of CO2 from power plants in 393 

Pennsylvania (PA) and West Virginia (WV) sometimes passed through parts of the Balt-Wash 394 

area. According to the HYSPLIT analysis, CO2 from power plants in PA passed downwind of 395 

Baltimore, MD and accounted for a significant portion of the total amount of CO2 in the model 396 

grids (27.5% on UMD-RF4 and 35.4% on UMD-RF5). This forward modeling result agrees with 397 

the result from the SO2 back trajectory analysis, which attributed some plumes of SO2 observed 398 

downwind of Baltimore, MD to the power plants in PA (Figure 4c, d). However, CO2 emitted by 399 

power plants in Ohio (OH) was relatively well distributed over a large horizontal distance when 400 

it reached the Balt-Wash area. This result implies that power plant emissions from OH and 401 

farther upwind states would have negligible impact on mass balance calculation for the Balt-402 

Wash area. The emissions of CO2 from power plants in PA and WV, however, must be 403 

considered in our analysis. 404 

In summary, both the SO2 back trajectory and CO2 forward modeling results indicate that inter-405 

state transport of power plant plumes can induce local increases of the mole fractions of CO2 406 

around the Balt-Wash area, especially when consistent northwesterly wind prevails. Accurate 407 

representation of the spatially varying CO2 background is therefore needed to account for 408 

upwind power plant emissions of CO2 in the mass flux calculation for the Balt-Wash area. 409 

3.3 Power plant emissions: Evaluating the aircraft-based mass balance approach 410 

Prior to applying the mass balance approach to the Balt-Wash area, the accuracy and precision of 411 

the technique was evaluated using the Continuous Emissions Monitoring Systems (CEMS) 412 

records for CO2 from two local power plants. Several spikes of CO2 could be attributed to either 413 

the CP or MT power plant (Figure 3), and were used for the mass balance calculation. The total 414 

uncertainty of the CEMS records was determined by propagating individual uncertainty in the 415 

following terms: volumetric flow rate/CO2 concentration measurements by CEMS (USEPA, 416 
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2009), difference of CEMS records against fuel consumption based U.S. Energy Information 417 

Administration (EIA) datasets (Gurney et al., 2016; Quick & Marland, 2019), and atmospheric 418 

transport time of power plant plumes. A detailed description of this uncertainty propagation is 419 

given in Text S4. 420 

In Figure 6a, colored symbols show the 16 aircraft-based mass balance estimates of emission 421 

rates of CO2 for the CP and MT power plants. The black lines show the hourly emission record 422 

of each power plant reported to EPA CAMD. According to EPA CAMD, a total of 0.23 MtC was 423 

emitted by the two power plants during February 2015. Of the total emissions, 98.8% was 424 

measured directly by CEMS, while 1.2% was either calculated or went through substitution 425 

procedures. All emissions records during the mass balance flights period were solely from 426 

CEMS.  427 

The mean percentage error (MPE) and the mean absolute percentage error (MAPE) were –0.3% 428 

and 24%, respectively, for all 16 mass balance estimates the CO2 emission rate (FLAGG-MD) 429 

relative to that provided by CEMS (Figure 6b). The mean and standard deviation of the 430 

difference between the FLAGG-MD and CEMS emission values are –5±43 tC/hr. However, 431 

much larger differences, ranging from –58% to 84%, are observed for individual plume sampling 432 

comparisons. The large variation in these individual relative differences implies that the emission 433 

rate of CO2 estimated from a single mass balance experiment may include significant random 434 

error. Such random error is most likely to be induced by incomplete mixing of power plant 435 

plumes within the boundary layer, causing the unrepresentative sampling of power plant plumes. 436 

The CO2 background, often considered as a significant source of uncertainty in the mass balance 437 

approach for urban plumes (Cambaliza et al., 2014; Heimburger et al., 2017; Turnbull et al., 438 

2018), is unlikely be a source of error for power plant plumes given their narrow horizontal 439 

widths and a large value of the term ([C] – [Cbg]) that appears in Equation (1) (Figure 3). The 440 

mean value of ([C] – [Cbg]) at the peak of the spikes for the 16 sampled plumes was ~5.5 ppm. 441 

We also found that the combined error for multiple mass balance estimates of power plant 442 

emissions decreases approximately as the square root of the number of the plume crossings rises, 443 

which suggests the estimates are indeed influenced by random error. Our analysis suggests that 444 

power plants emissions can be estimated with MPE of ~10% (or less) when the total number of 445 

twelve (or more) plumes were sampled by aircraft for the mass balance calculation (95% 446 

confidence level). The importance of repeating mass balance experiments for the same emission 447 

source has been discussed in Heimburger et al. (2017). 448 

3.4 The Baltimore, MD-Washington, D.C. area emissions: Sensitivity analysis 449 

The emission rate of CO2 from the Balt-Wash area was estimated based on the five UMD flights 450 

and two Purdue flights. Table 1 summarizes the mean and the standard deviation of the five mass 451 

balance parameters shown in Equation (1) for these seven flights. 452 

Table 2 shows the baseline estimates of the emission rate of CO2 that we consider to be the best 453 

estimates for the seven research flights. As the experimental period spans nine days in late 454 

February, the emission rate of CO2 from the study area may be assumed to be constant during the 455 

sampling period. This assumption is supported by the fact that the emission rate of CO2 derived 456 

from FFDAS shows small variation during the sampling period, having a relative standard 457 

deviation of 3% (See section 3.5.2). Assuming a constant emission rate, the standard error of the 458 

mean at 95% confidence level (SEM95) can be calculated as a measure of the precision with the 459 

following equation: 
t ∗ σ

√𝑛
, where t-student = 2.306, 𝜎 is the sample standard deviation of the seven 460 
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mass balance estimates, and n is the number of the mass balance experiments (Heimburger et al., 461 

2017). The mean of the seven baseline estimates and its SEM95 were 89,000±15,000 mol/s 462 

(3,870±630 tC/hr). This result indicates that the emission rate of CO2 over the Balt-Wash area in 463 

the late February could be determined with the precision of 16% at 95% CL by repeating the 464 

mass balance experiments seven times within a nine day span. 465 

The sensitivity of the baseline estimates was tested against the following five parameters: 466 

background CO2, PBL height, wind variability observed during the downwind flight, wind 467 

variability during air transport cross the study area, and instrument uncertainty. For the 468 

sensitivity test, the ±1𝜎 uncertainty value of each parameter were used for the mass balance 469 

calculation. Section 2.5 describes how the 1𝜎 uncertainty was determined for each of these five 470 

parameters. Table 2 shows relative differences (RD) of the newly calculated emission rates 471 

against their baseline estimates. 472 

On average, the estimated emission rate of CO2 is most sensitive to the uncertainty of the 473 

perpendicular wind speed observed during downwind flight, with the mean of the seven RD as 474 

±25%. The PBL height and the CO2 background were the second and the third most important 475 

parameters contributing to the overall uncertainty in the emission rate of CO2. Instrument 476 

measurement uncertainties (temperature, pressure, CO2) and the wind variability during the air 477 

transport over the Balt-Wash area (parameter k) show less significant impact the emission 478 

estimate of CO2 than other parameters. 479 

The total uncertainty (1𝜎) for each baseline estimate was determined by propagating 1𝜎 values of 480 

the five sensitivity parameters using Monte Carlo simulations. The total uncertainty of seven 481 

mass balance estimates ranged from ±31% to ±49%, with the mean of the seven total 482 

uncertainties being ±38%. The precision assigned to the mean of the seven independent mass 483 

balance estimates with SEM95 is ±16%, which is much lower than the average of the seven total 484 

uncertainties (38%). These results are comparable to findings from previous INFLUX studies 485 

that made use of an aircraft-based mass balance approach to estimate urban CO2 emissions. 486 

Cambaliza et al. (2014) assigned an overall uncertainty of ~37% (or conservative ~50% when 487 

including unknown systematic errors) to the CO2 emission rate estimated from a single aircraft-488 

based mass balance experiment. Heimburger et al. (2017) estimated CO2 emission rates for the 489 

city of Indianapolis with SEM95 of ±17% by averaging nine aircraft-based mass balance 490 

estimates conducted during November-December 2014.  491 

3.5 Comparison of top-down and bottom-up emissions 492 

In this study, differences between atmospheric observation based (top-down) and inventory data 493 

based (bottom-up) approaches were studied from three different perspectives. First, geographical 494 

distributions of CO2 flux were compared for five bottom-up products: Anthropogenic Carbon 495 

Emissions System version 1 (ACESv1, (Gately & Hutyra, 2017, 2018)), Emissions Database for 496 

Global Atmospheric Research version 4.3.2 (EDGARv432, (Janssens-Maenhout et al., 2017)), 497 

FFDASv2.2, the Open-Source Data Inventory for Anthropogenic CO2 version 2018 498 

(ODIAC2018, (Oda et al., 2018; Oda & Maksyutov 2011, 2015)), and CarbonTracker version 499 

2017 (CT2017, (Peters et al., 2007)). Second, hourly emissions of CO2 estimated from the 500 

aircraft (FLAGG-MD) were compared to hourly emissions from Fossil Fuel Data Assimilation 501 

System version 2.2 (FFDASv2.2, (Asefi-Najafabady et al., 2014; Rayner et al., 2010)). Finally, 502 

monthly emissions of CO2 estimated from FLAGG-MD were compared to monthly emissions 503 

from the bottom-up products.  504 
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The bottom-up gridded products were largely developed based upon the emission downscaling 505 

method, which attempts to downscale national (or sub-national) and annual (or sub-annual) 506 

emissions inventories into model grids using spatiotemporal metrics (Gurney et al., 2019; Oda et 507 

al., 2019). For example, ODIAC2018 downscales emissions estimates from the Carbon Dioxide 508 

Information Analysis Center (CDIAC) into a 1 km global grid, using the carbon monitoring 509 

action (CARMA) data for power plants and the Defense Meteorological Satellite Program 510 

(DMSP) nightlight imagery for non-point sources. FFDASv2.2 downscales national emissions 511 

estimates by the International Energy Agency (IEA) onto a 0.1° resolution lat/lon global grid, 512 

using data assimilation to combine DMSP nightlight, population, traffic pattern, and power plant 513 

data. EDGARv432 downscales national sectoral emissions estimates onto a 0.1° lat/lon global 514 

grid for each emissions sector specified by IPCC. ACESv1 downscales the sector-specific 515 

emissions estimates provided by the National Emissions Inventory (NEI), Greenhouse Gas 516 

Reporting Program (GHGRP), and Database of Road Transportation Emissions (DARTE) onto 1 517 

km spatial resolution U.S. northeast regional grid. CT2017 is a data assimilation system with 518 

four sectors: fossil fuel combustion, biosphere, ocean, and fire. For the biosphere and ocean 519 

sectors, prior model CO2 fluxes were optimized onto a 1° lat/lon global grid using atmospheric 520 

CO2 observations and transport simulations. For the fossil fuel combustion sector, emissions 521 

from ODIAC and the “Miller” emissions data set were averaged onto a 1° lat/lon global grid. 522 

The net amount of biogenic CO2 emitted from the Balt-Wash area during February 2015 was 523 

computed from CT2017, and this value was compared to the VEGAS estimate of the biogenic 524 

CO2 emissions (section 3.5.3). 525 

3.5.1 The Baltimore, MD-Washington, D.C. area: Spatial distribution of CO2 flux 526 

Figure 7 shows the spatial distribution of Fossil Fuel CO2 (FFCO2) flux over the Balt-Wash area 527 

from the five bottom-up products. These five bottom-up emission inventories indicate similar 528 

overall patterns, but distinctly different geographic distributions of the emissions due to 529 

variations in the underlying metrics that drive the emissions as well as spatial resolution. 530 

ACESv1 (with a 1 km resolution) shows highly resolved geographical distributions of FFCO2, 531 

such as the Beltway around Washington, D.C. and I-95 highway connecting major cities in the 532 

northeast corridor, due to their use of census block-level geospatial information (Gately & 533 

Hutyra, 2017). ODIAC2018, also at 1 km resolution, does not resolve individual roads due to 534 

their use of satellite-observed nighttime light data as a spatial emission proxy for non-point 535 

source emissions (Oda et al., 2018; Oda & Maksyutov, 2011). Still, it is noticeable that the 536 

global model ODIAC2018 shows a horizontal transect of CO2 flux summed across the study area 537 

that is similar to that from the regional model ACESv1 (Figure 7f). The difference between 538 

ACESv1 and ODIAC2018 emissions would be less significant at an aggregated coarser spatial 539 

resolution, such as the resolution of the many inverse model simulations (Oda et al., 2019). Maps 540 

of CO2 flux from FFDASv2.2 and EDGARv432 (0.1° resolution) show emission hot spots for 541 

the major power plants and the urban areas. Emissions from these power plants are represented 542 

by the higher resolution ACESv1 and ODIAC2018 inventories, but are difficult to see on panels 543 

(a) and (b) of Figure 7 because the pixels are so small. Horizontal transects of the CO2 flux 544 

derived from FFDASv2.2 and EDGARv432 exhibit an overall similar shape to those from 545 

ACESv1 and ODIAC2018, while spikes induced by power plants are more apparent in the flux 546 

transects from ACESv1 and ODIAC2018 due to higher spatial resolution (Figure 7f). The 547 

CT2017 inventory has a 1° lat/lon resolution, and hence the CT2017 map of FFCO2 is more 548 
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spatially uniform at the scale of our study domain, since there are only 4 grid cells covering the 549 

Balt-Wash area. 550 

According to VEGAS, the net amount of CO2 emitted by the biogenic sector was ~0.4 MtC in 551 

the Balt-Wash area during February 2015. However, the horizontal transect of biogenic CO2, 552 

simulated by VEGAS and scaled by NDVI (see section 2.4), is nearly constant across the Balt-553 

Wash area during February 2015 (Figure 7f). This horizontal transect for biogenic emissions 554 

across our study area indicates that the CO2 background, defined by the linear fitting method, is 555 

likely to already include the enhancement signal due to biogenic emissions. Therefore, we did 556 

not attribute any of the CO2 flux found from the mass balance estimate to the biogenic sector 557 

(Figure 8). We acknowledge that the lack of any independent source of validation for 558 

VEGAS/NDVI outputs, such as radiocarbon measurements or eddy covariance flux towers, 559 

might be a weakness in our analysis. On-going efforts to develop 
13

CO2 and radiocarbon 560 

measurements from NIST northeast corridor tower network (Karion et al., 2019) and urban 561 

biospheric CO2 models (Hardiman et al., 2017; Smith et al., 2019) will provide further 562 

opportunity to study the impact of biogenic CO2 flux on the aircraft-based mass balance 563 

estimates. 564 

3.5.2 Hourly emission rate of CO2 from the Baltimore, MD-Washington, D.C. area 565 

The FLAGG-MD estimate of fossil-fuel combustion CO2 (FFCO2) emission rate is derived from 566 

the baseline mass balance estimates shown in Table 2. First, the emissions of CO2 from 567 

human/pet respiration (human, dog, and cat) are estimated based on the following assumptions: 568 

the population in the Balt-Wash study area (red box, Figure 7e) was ~8.1 million in February 569 

2015 (CIESIN, 2018); the CO2 release rate by human respiration is 254 gC/person/day (Prairie & 570 

Duarte, 2007); dog/cat ownership is 0.22 dogs/person and 0.24 cats/person, and the dog/cat 571 

release rate of CO2 is 25% of the human release rate (American Veterinary Medical Association, 572 

2012). Next, the estimated emissions from human/pet respiration are subtracted from the baseline 573 

mass balance estimates. Then, the remainder of the mass balance estimates was apportioned to 574 

either FFCO2 or Non-FFCO2 Anthropogenic emissions (hereafter ‘NFA-CO2’) by applying the 575 

ratio derived from the Maryland GHG inventory for year 2014 (MDE, 2016). The NFA-CO2 576 

consists of following sectors: 1) industrial processes (cement manufacture, limestone and 577 

dolomite, soda ash, ammonia and urea production), 2) agriculture (urea fertilizer usage), 3) waste 578 

management (waste combustion, landfills, and residential open burning). Note that emissions 579 

from gasoline for on-road transportation were solely regarded as FFCO2, as the emissions from 580 

ethanol (E85) in gasoline comprises only ~0.1% of total emissions from gasoline for on-road 581 

transportation (MDE, 2016). See Text S5 for a detailed description of the method utilized for 582 

human/pet respiration and the FFCO2 to Non-FFCO2 ratio from the Maryland GHG inventory, 583 

and their associated uncertainties. Note that we did not apportion any of the mass balance 584 

estimates to the biogenic sector, as discussed in section 3.5.1. 585 

Figure 8 shows the emission rates of CO2 from the Balt-Wash area estimated from seven 586 

FLAGG-MD flights and corresponding FFDASv2.2 estimates. On average, FFCO2 comprises 587 

93% of the mass balance estimates, while NFA-CO2 and human/pet respiration comprises 4.6% 588 

and 2.6%, respectively. Overall, the emission rate of FFCO2 from FFDASv2.2 for the flight days 589 

was 32% larger than that from FLAGG-MD but within the 1𝜎 uncertainty range for most flights, 590 

except UMD-RF5. Still, such level of agreement is very meaningful given that FLAGG-MD and 591 



Confidential manuscript submitted to Journal of Geophysical Research Atmospheres 

 15 

FFDASv2.2 use two independent approaches: aircraft observation-based sampling versus a data 592 

assimilation framework for disaggregating the annual/national inventory into hourly/0.1° grids.   593 

Turnbull et al. (2018) highlighted that the background CO2, determined from the edge fitting 594 

method, is likely to be overestimated when there are nonzero emissions over the edge region of 595 

the study domain. In their study, CO2 flux values were computed using an approach similar to 596 

Equation (1). Then, computed CO2 flux values were scaled to a background-corrected aircraft 597 

mass balance flux by adding a mean CO2 flux value for the rural area outside the aircraft 598 

footprint which was determined from a bottom-up inventory. Should we take the same approach, 599 

using either FFDAS or ODIAC to define the emissions of CO2 along the narrow vertical boxes 600 

that define region illustrated in Figure 7, our value of FFCO2 for the Balt-Wash area would 601 

increase by 30%, rising from 1.9 MtC to 2.5 MtC. This type of adjustment is not used in our 602 

analysis for two reasons.  First, this adjustment implicitly assumes our estimate of background 603 

CO2 is too large by approximately 0.3 ppm, whereas the comparison of the mole faction of 604 

background CO2 to the measured upwind mole fraction of CO2 already indicates a potential bias 605 

of 0.18 ppm (Figure 2a).  If we were to adjust background CO2 to adjust for possible 606 

unaccounted emissions in these edge, rectangular regions, the scatter plot between upwind and 607 

background CO2 would exhibit such a bias that would begin to approach the standard deviation 608 

of the difference between upwind and background CO2. Second, this adjustment assumes that 609 

anthropogenic emissions of CO2 can be well defined in sparsely populated geographic regions by 610 

global models.  We are reluctant therefore to make such an adjustment to our estimate of FFCO2 611 

for the Balt-Wash area, but we acknowledge that our definition of background CO2 found using 612 

the method illustrated in Figure S3 could potentially need revision, due to lack of explicit 613 

consideration of anthropogenic emissions of CO2 in these edge regions.  Our approach is similar 614 

to the methodology used in numerous other recent mass balance studies (Heimburger et al., 615 

2017; Krautwurst et al., 2016; Ren et al., 2019). 616 

Finally, we acknowledge that the rectangular-shaped region (Figure 7), determined based on the 617 

dominant wind direction, may not perfectly represent the emissions area that induced enhanced 618 

CO2 observed by the aircraft, especially when uncertainties associated with wind variability 619 

determination are significant. Such mis-representation of the emissions area could have 620 

potentially contributed to the difference between top-down and bottom-up estimates (Lopez-Coto 621 

et al., 2020; Turnbull et al., 2018). In this study, flight-by-flight adjustment for the geographic 622 

study area was not attempted, as six of the seven flights share similar flight patterns and wind 623 

conditions. Unlike the other flights, UMD-RF9 was conducted under northeasterly wind 624 

conditions. 625 

3.5.3 Monthly total emission of CO2 from the Baltimore, MD-Washington, D.C. area 626 

The four bottom-up gridded products cover different years (i.e., EDGARv432: 2010, ACESv1: 627 

2014, FFDASv2.2 and ODIAC2018: 2015) with varying temporal resolution (i.e., EDGARv432 628 

and ODIAC2018: monthly, FFDASv2.2 and ACESv1: hourly). To facilitate the comparison 629 

among these bottom-up models and our mass balance estimates, the amounts of FFCO2 emitted 630 

during the month of February in the Balt-Wash study area were computed from each bottom-up 631 

product and our seven mass balance estimates shown in Figure 8. No further attempts were made 632 

to harmonize the temporal mismatch existing in EDGARv432 (year 2010) and ACES v1 (year 633 

2014). The FLAGG-MD monthly total FFCO2 emission was estimated by temporally scaling up 634 

the seven FLAGG-MD emission rates of FFCO2, shown in Figure 8. The Temporal 635 
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Improvements for Modeling Emissions by Scaling (TIMES), which provides scaling factors for 636 

diurnal and weekly variability of FFCO2 in global rectangular 0.25° lat/lon grids, was used for 637 

the temporal scaling process (Nassar et al., 2013). The monthly emissions from human/pet 638 

respiration and NFA-CO2 were estimated as described in section 3.5.2. The major challenge for 639 

comparing different bottom-up gridded products is to harmonize various emission source sectors 640 

covered by each product (Gately & Hutyra, 2017; Gurney et al., 2019; Oda et al., 2019). In this 641 

study, source sector harmonizing was only conducted for EDGARv432 (see Text S6), while all 642 

available sectors in other bottom-up products (ACESv1, FFDASv2.2, and ODIAC2018) were 643 

used to derive FFCO2 emissions. Thus, sectoral mismatching among the FLAGG-MD estimate 644 

and the four bottom-up products exists for the following sectors: cement manufacturing, gas 645 

flaring, aviation, and oil and gas extraction, refining, and transport. These mismatching sectors 646 

account for ~4% of the total FFCO2 in our study domain (see Text S6). Note that one of the main 647 

objectives set for developing these global bottom-up gridded products was to provide a prior CO2 648 

flux for use in inversion modeling (Oda et al., 2018). Therefore, FFCO2 flux values at specific 649 

time-space model grids should be regarded as a climatological mean rather than snapshot of the 650 

truth (Gurney 2018). 651 

We estimate that 2.4 MtC of CO2 was emitted from the Balt-Wash area during February 2015, 652 

according to the FLAGG-MD estimate (all emission other than biogenic) and VEGAS 653 

simulations (biogenic CO2) (Figure 9). The total 2.4 MtC consists of 1.9 MtC of FFCO2 (78% of 654 

the total), 0.4 MtC of biogenic CO2 (15%), 0.1 MtC of NFA-CO2 (4%), and 0.06 MtC of 655 

human/pet respiration (3%). The mean and the standard deviation of the four bottom-up 656 

estimates of FFCO2 were 2.2±0.3 MtC (FFDASv2.2: 2.5 MtC, ACESv1: 2.3 MtC, EDGARv432: 657 

2.0 MtC, ODIAC2018: 1.9 MtC), which is 15% larger than the FLAGG-MD estimate of FFCO2 658 

(1.9±0.3 MtC). The ODIAC2018 bottom-up estimate of FFCO2 shows best agreement with the 659 

top-down FLAGG-MD estimate. 660 

ACESv1 and EDGARv432 provide sectoral emissions of FFCO2 for years 2014 and 2010, 661 

respectively. Based on ACESv1, power plant emissions were 24% of the monthly total FFCO2, 662 

while they were 35% of the monthly total FFCO2 according to EDGARv432 (Figure 9). 663 

Estimates from EPA CAMD and FLAGG-MD for our study area suggest power plant emissions 664 

accounted for 29% of the monthly total FFCO2 emissions in February 2015. On-road 665 

transportation emissions account for 36% of the ACESv1 estimate, while they only account for 666 

13% of the EDGARv432 estimate. A significant difference of on-road emissions between 667 

ACESv1 and EDGARv432 might be due to the temporal mismatching (i.e., 2010 versus 2014) of 668 

the two inventories, but more likely reflects a bias in either one or perhaps both products. Gately 669 

et al. (2013) and McDonald et al. (2014) reported that EDGAR overestimates urban vehicles 670 

emissions in major U.S. cities. However, the recent update of EDGAR version 4.3.2 addressed 671 

this issue by adopting proxy layers for various roads and vehicles types (Janssens-Maenhout et 672 

al., 2017). We have not attempted to further quantify the source of the difference between on-673 

road emissions of CO2 for these two inventories, as this effort is beyond the scope of this study. 674 

We leave the detailed analysis of sectoral composition of urban FFCO2 for future work.  675 

We would like to emphasize that this study provides an independent, objective measure for the 676 

emission comparison. Evaluation of downscaled emissions is often difficult mainly due to the 677 

lack of physical measurements (Andres et al., 2016; Oda et al., 2018) and often done by inter-678 

comparison of emission inventories that allow only for characterization of differences among 679 



Confidential manuscript submitted to Journal of Geophysical Research Atmospheres 

 17 

inventories. This study demonstrates the use of atmospheric measurements for examining the 680 

errors and biases in the emission inventories.  681 

Finally, we compare ODIAC2018, which showed the best agreement against our aircraft-based 682 

estimate of the monthly CO2 emissions, to the Maryland GHG inventory published by the 683 

Maryland Department of the Environment (MDE) (MDE, 2016). The Maryland GHG inventory 684 

estimated that 18.8 MtC of FFCO2 was emitted from Maryland during year 2014, while 685 

ODIAC2018 estimated 20.2 MtC for the same domain in 2014. The overall excellent agreement 686 

among the top-down approach, bottom-up models, and State emission inventory is promising 687 

given the fact that each relies on independent datasets and methodologies. 688 

4 Conclusions 689 

The first FLAGG-MD aircraft campaign was conducted during February 2015 to study the 690 

emissions of CO2 in the Balt-Wash area. Several conclusions are drawn from this study. 691 

First, a series of HYSPLIT transport modeling analyses was conducted to provide source 692 

attribution of the plumes of CO2 observed by the aircraft. A number of plumes of CO2 could be 693 

attributed to either Washington, D.C. and Baltimore, MD, or the major power plants in the study 694 

area. We found that inter-state transport of power plant plumes can induce a substantial local 695 

increase of CO2 throughout the Balt-Wash area, increasing the spatial variability of background 696 

CO2. 697 

Second, the accuracy and precision of the aircraft-based mass balance approach were tested 698 

against local power plant emissions, and also the sensitivity of the approach was tested for urban 699 

emissions. Emissions of CO2 from two local power plants were estimated using aircraft data and 700 

the resulting estimates were found to have no discernible systematic bias, with a mean 701 

percentage error of −0.3 % compared to corresponding CEMS data for 16 cases. Also, power 702 

plants emissions could be estimated with MPE of ~10% when a total number of twelve plumes 703 

was sampled by the aircraft for the mass balance calculation (95% CL). These results 704 

demonstrate that the accuracy of mass balance estimates increases and as the number of mass 705 

balance experiments increases for the same target emission source (Heimburger et al., 2017; 706 

Karion et al., 2015). From a sensitivity analysis, we found that the variability of the wind speed 707 

and direction downwind of the study area have the largest impact on the mass balance 708 

calculation, followed by the boundary layer height and the specification of background CO2. The 709 

1𝜎 uncertainty of a single mass balance estimate of CO2 emission from the Balt-Wash study area 710 

can be significant, ranging from ±31% to ±49%. However, we also found that the precision 711 

assigned to the mean of the seven mass balance estimates was considerably better, with a SEM95 712 

of ±16 %. This result supports the findings from previous studies: the precision of the mass 713 

balance estimate of CO2 emissions over urban regions is improved by repeating mass balance 714 

experiments numerous times, within a short span of time. 715 

Finally, differences among the five bottom-up models (ACESv1, CT2017, EDGARv432, 716 

FFDASv2.2, and ODIAC2018) and the top-down estimate were studied from the perspective of 717 

both the geographical distribution of CO2 flux and the total emissions over the Balt-Wash study 718 

area. With respect to the geographical distribution of CO2, we found that horizontal transects of 719 

CO2 flux across the Balt-Wash area derived from four models (ACESv1, ODIAC2018, 720 

EDGARv432, and FFDASv2.2) have similar structures, showing spikes for the area where major 721 

power plants and highly developed areas are located. Only ACESv1 provided spatial distribution 722 
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of CO2 flux on the spatial scale of individual roads. From the perspective of total monthly 723 

emissions, the FLAGG-MD aircraft flights yield and estimated 1.9±0.3 MtC as the amount of 724 

FFCO2 emitted from the Balt-Wash area during February 2015, and the four bottom-up models 725 

(except for CT2017) estimated 2.2±0.3 MtC. ODIAC2018, which provides downscaled 726 

emissions for year 2015, shows best agreement with the FLAGG-MD top-down estimate. 727 

Evaluation of subnational emissions of bottom-up models is often limited to an evaluation based 728 

on an inter-comparison among different models. This study provided an independent, objective 729 

measure for the inventory evaluation. Additionally, we found that the statewide annual total 730 

FFCO2 emissions in the Maryland (MDE) GHG inventory was 7% lower than the ODIAC2018 731 

estimate. 732 

Numerous efforts are currently underway to better understand urban emissions of CO2. For 733 

instance, the recent installations of observation towers and low-cost sensors around the Balt-734 

Wash area will provide improved constraints on spatio-temporal variability of the CO2 735 

background (Lopez-Coto et al., 2017; Martin et al., 2017, 2019; Mueller et al., 2018). Also, 736 

radiocarbon measurements and urban-specific biospheric CO2 models will provide better 737 

understanding on the impact of biogenic CO2 flux on the aircraft-based mass balance approach. 738 

A new version of VEGAS currently under development will incorporate an accurate 739 

representation of the diurnal cycle of the biogenic flux of CO2. Lastly, frequent and regular 740 

aircraft campaigns in the future will provide resources to better understand the gaps among top-741 

down approaches, bottom-up models, and state/local GHG inventories, benefiting both stake 742 

holders and the carbon cycle modeling community. 743 
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Table 1. Summary of the mass balance parameters used to estimate the emissions of CO2 from 1029 

the Balt-Wash area. For the boundary layer height (zf), the best estimates and 1𝜎 uncertainties are 1030 

shown. For the mole fraction of CO2 ([CO2]), CO2 background ([CO2,bg]), perpendicular wind 1031 

speed (U), and the wind variability during air transport across the study area (k), the mean and 1032 

the standard deviation during the downwind flight period are shown (See section 2.5). The flux 1033 

of CO2 was calculated for each point in each transect, and thus the mean [CO2], [CO2,bg], U, and 1034 

k values thus not directly translate into the mass balance estimate results. 1035 

 

 

Date 

 

𝑧𝑓 ± 1𝜎 

[m] 

[CO2]̅̅ ̅̅ ̅̅ ̅ ± 1𝜎 

[ppm] 
[CO2,𝑏𝑔]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ± 1𝜎 

 [ppm] 

�̅� ± 1𝜎 �̅� ± 1𝜎 

 

UMD-RF4 Feb 19 2015 1,372 ± 280 409.3 ± 0.8 408.5 ± 0.3 12.8 ± 1.6  0.95 ± 0.01 

UMD-RF5 Feb 20 2015 1,109 ± 139 411.2 ± 1.4 409.4 ± 0.2 5.6 ± 1.4 0.75 ± 0.04 

UMD-RF6 Feb 23 2015 1,013 ± 265 406.8 ± 1.1 405.7 ± 0.4 10.6 ± 1.5 1.06 ± 0.01 

UMD-RF8 Feb 25 2015 1,393 ± 137 410.1 ± 1.9 408.6 ± 0.9 5.3 ± 2.0 0.91 ± 0.05 

UMD-RF9 Feb 26 2015 896 ± 268 417.9 ± 2.5 414.2 ± 0.8 3.9 ± 1.1 0.90 ± 0.04 

Purdue-RF3 Feb 19 2015 1,372 ± 280 410.0 ± 0.5 409.2 ± 0.2 12.7 ± 1.3 1.00 ± 0.02 

Purdue-RF4 Feb 27 2015 1,626 ± 349 414.3 ± 2.4 412.6 ± 0.6 5.1 ± 1.6 0.98 ± 0.04 

 1036 

Table 2. Sensitivity test for the aircraft-based mass balance estimates of the emission of CO2 1037 

from the Balt-Wash area. Baseline estimates from the seven flights are shown on the first row. 1038 

Relative differences indicate the changes of the baseline estimate when the ±1𝜎 uncertainty of 1039 

each mass balance parameter is used to calculate the emission of CO2. The total 1𝜎 uncertainty 1040 

of each baseline estimate is shown as the relative standard deviation (RSD) at the bottom row. 1041 

On the column labeled “Mean”, the mean and SEM95 values of seven Baseline estimates were 1042 

shown in the first row, and the mean values were shown for the remaining rows.  1043 
 1044 

  1045 

 UMD   Purdue    

 
RF4 RF5 RF6 RF8 RF9  RF3 RF4  Mean 

 Feb 19 Feb 20 Feb 23 Feb 25 Feb 26  Feb 19 Feb 27   

Baseline estimates [10
5
 mol/s] 1.10 0.68 0.98 0.79 0.74  1.09 0.89  0.89 ± 0.15 

Relative Differences (RD) [%]           

   Wind variability, Downwind ± 13 ± 25 ± 14 ± 39 ± 29  ± 18 ± 39  ± 25 

   PBL height ± 20 ± 13 ± 27 ± 10 ± 30  ± 20 ± 21  ± 20 

   CO2 background ± 19  ± 11  ± 16  ± 9  ± 19   ± 18  ± 20   ± 16  

   Instruments (Temp, Pres, CO2) ± 8 ± 3 ± 6 ± 4 ± 2  ± 11 ± 5  ± 5 

   Wind variability, Transport ± 1 ± 4 ± 1 ± 4 ± 6  ± 2 ± 3  ± 3 

Total uncertainty [RSD, %] ± 32  ± 31  ± 34  ± 41  ± 49   ± 33  ± 49   ± 38  
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Figure 1. Overview of the FLAGG-MD aircraft campaign during February 2015 conducted in 1046 

the Baltimore, MD and Washington, D.C. metropolitan areas; the white rectangle defines the 1047 

Balt-Wash study area used throughout the analysis. Yellow and cyan lines indicate the UMD and 1048 

Purdue aircraft flight tracks, respectively. The dominant wind direction during the campaign 1049 

period is shown by the white arrow. Point emission sources are shown as circles; the size and 1050 

color of these circles indicate the amount of CO2 (size) and SO2 (color) emitted from these 1051 

sources in February 2015 (USEPA AMPD 2015). The VP labels indicate locations where vertical 1052 

profile data were obtained. The points labeled A, B, C, and D denote the edge of the region for 1053 

which the emission of CO2 from the Balt-Wash region is found. The boundary of the vertical 1054 

plane AB, for which transects at various altitudes were flown, is used to define the downwind 1055 

study area to calculate the emission of CO2 for all flights except UMD-RF9. The vertical plane 1056 

BC is used to define the downwind boundary for UMD-RF9, since northeasterly winds were 1057 

present on 26 February 2015.  1058 

 1059 

Figure 2. Scatter plot of the upwind CO2 mole fraction (10 second running mean) versus the 1060 

paired downwind, background estimate of CO2. The number of paired data points for each flight 1061 

is indicated on panel (a); the total number of paired points (5882) yields a mean and standard 1062 

deviation of 0.180.79 ppm. Panel (b) shows the mixed layer depth extracted from HYSPLIT 1063 

run using North American Regional Reanalysis (NARR) meteorological fields along the upwind 1064 

aircraft flight track and the location of the paired, downwind data. Results are shown for six of 1065 

the seven mass balance flights considered in the analysis, because upwind measurements of CO2 1066 

were not obtained for UMD-RF9. 1067 

 1068 

Figure 3. (a) Colored lines depict back trajectories initiated along the aircraft track, downwind of 1069 

the Balt-Wash area on 20 February 2015 (UMD-RF5). Triangles indicate the locations of back 1070 

trajectories at every hour. Black circles indicate the major power plants in the study area. Mean 1071 

aircraft altitude and the wind speed and direction measured during the flight are shown in the left 1072 

box. (b) Time series of mole fractions of CO2 and SO2 measured during the same flight track. 1073 

Green shaded areas indicate the plumes partially attributed to local power plants while the grey 1074 

shaded areas indicate urban plumes. The DC+𝛼 label indicates that the plume is attributed to 1075 

Washington, D.C. and nearby Dickerson power plant. The Balt+𝛽 label indicates that the plume 1076 

is attributed to Baltimore, MD and to major power plants in Pennsylvania (labelled as PA in the 1077 

map, see Figure 4 for further analysis). See section 3.5.1 for detailed spatial distribution of fossil-1078 

fuel CO2 flux over the study area. 1079 

 1080 

Figure 4. (a-f) Colored circles show mole fractions of SO2 measured during six flights in 1081 

February 2015. Colored lines are back trajectories initiated at the location of the SO2 plume 1082 

observed downwind of the Balt-Wash area. Triangles on each trajectory show the location at 1083 

every hour. Mean wind measured during the downwind flight is shown at the left-bottom corner 1084 

of each panel. (g) A map showing same flight tracks and trajectories of (a-f) in a larger domain. 1085 

The dashed box encloses the locations of five major power plants in Pennsylvania. The names of 1086 

power plants, fuel, and their nameplate capacity are shown at the left-bottom corner (Source: 1087 

USEIA, 2016). 1088 

 1089 
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Figure 5. Maps showing HYSPLIT particle dispersion simulations of power plant emissions of 1090 

CO2 and flight tracks of (a) UMD-RF4 and (b) UMD-RF5. “HYSPLIT CO2” labels (color bars 1091 

and Y axes) indicate the enhancement of CO2 due to power plant emissions averaged within the 1092 

boundary layer. “Aircraft CO2” labels indicate measured mole fractions of CO2 for a single 1093 

transect, along the line A at 707 m (UMD-RF4) and 614 m (UMD-RF5) altitude. The location of 1094 

power plant point emission sources used for the modeling are shown as pink circles. (c, d) Time 1095 

series of “Aircraft CO2” at 707 m (UMD-RF4) and 614 m (UMD-RF5) altitude along the line 1096 

AB and stacked bar plots of “HYSPLIT CO2” that were sampled for aircraft locations of the in-1097 

situ data. Each color of the bar indicates the state or region where the sampled HYSPLIT CO2 1098 

was emitted; i.e., emissions from the study area are denoted as DC/Balt. The percentage of 1099 

power plant emissions from region, for the given transects, is also provided (numbers sum to 1100 

100%). 1101 

 1102 

Figure 6. (a) Emission of CO2 from the Chalk Point and Morgantown power plants in units of 1103 

metric tons of carbon per hour. Black lines indicate the reported CEMS emission rates. Red and 1104 

green diamonds represent the emission rates that we estimated using in-situ measurements from 1105 

the UMD and Purdue aircraft, respectively. (b) Scatter plot showing the comparison of the same 1106 

dataset in (a). Dotted and solid lines indicate 1 to 1 ratio and linear regression lines, respectively. 1107 

Vertical error bars on each diamond indicate the 1𝜎 uncertainty induced by the uncertainty in the 1108 

adjusted mixing height (zadj) (section 2.5.3). Horizontal error bars indicate the combined 1109 

uncertainty of the CEMS records and the plume transport time (See Text S4). 1110 

 1111 

Figure 7. Maps of FFCO2 flux over the Mid-Atlantic region from (a) ACESv1, (b) ODIAC2018, 1112 

(c) FFDASv2.2, (d) EDGARv432, (e) CT2017. The Balt-Wash study area is indicated as a red 1113 

box. (f) Horizontal transects of CO2 flux derived from the biogenic model (VEGAS+NDVI) and 1114 

the five FFCO2 products (Unit: Million tons Carbon (MtC) per month). These transects were 1115 

obtained by summing the flux along diagonal latitudinal bins, as indicated by four grey shaded 1116 

areas shown in panel (e) and (f) (SE corner and NE corner of a red box, Washington, D.C. and 1117 

Baltimore). The x-axis in (f) represents the latitudes along the line AB shown in panel (e). For 1118 

major spikes, abbreviated names of the power plants are shown (see Figure 3). 1119 

 1120 
 1121 
Figure 8. The emission rates of CO2 from the Balt-Wash area during the sampling period of 1122 

seven research flights in February 2015. Solid bars and their black vertical lines indicate the 1123 

seven FLAGG-MD baseline estimates and their 1𝜎 uncertainty range (Table 2). FLAGG-MD 1124 

mass balance estimates were apportioned to FFCO2 (purple), Non-FFCO2 Anthropogenic 1125 

emissions (NFA-CO2, blue) and the human/pet respiration (yellow) (See Text S5). Dashed bars 1126 

indicate corresponding FFCO2 from FFDASv2.2. The black vertical lines at the top of the 1127 

FFDASv2.2 bars (dashed) indicate the minimum to maximum hourly emission rates of FFCO2 1128 

for each time period, and thus are not an uncertainty estimate of FFDASv2.2. 1129 

 1130 

Figure 9. Monthly emission of CO2 from the Balt-Wash area for February 2015. The emission 1131 

by human/pet respiration (yellow) was estimated using population data (GPWv4, (CIESIN, 1132 

2018)) and the average respiration rate from Prairie & Duarte (2007) (see Text S5). Non-FFCO2 1133 

Anthropogenic emissions (NFA-CO2, blue) were calculated from FLAGG-MD mass balance 1134 

estimates using the scaling factor derived from the MDE GHG inventory 2014 (MDE, 2016). 1135 
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EDGARv432 and ACESv1 were available for 2010 and 2014, respectively. The four bottom-up 1136 

FFCO2 estimates (ODIAC2018, EDGARv432, ACESv1, and FFDASv2.2) contain several 1137 

mismatching emission sectors, and thus are not directly comparable (see text). Sectoral emissions 1138 

from EDGARv432 and ACESv1 were aggregated into four categories: electricity generating 1139 

facilities (“ELEC”, diagonal), residential, commercial, and industrial (“RCI”, dotted), on-road 1140 

(horizontal) and non-road transportation (vertical). See Text S6 for emission sectors covered by 1141 

each bottom-up product. The “Bottom-Up Mean” bar and its vertical error bar indicate the mean 1142 

and standard deviation of the four bottom-up FFCO2 estimates. The error bar on the FLAGG-1143 

MD symbol indicates the 1𝜎 uncertainty range of the best estimate. 1144 

 1145 
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